Distribution path robust optimization of electric vehicle with multiple distribution centers

نویسندگان

  • Changxi Ma
  • Wei Hao
  • Ruichun He
  • Xiaoyan Jia
  • Fuquan Pan
  • Jing Fan
  • Ruiqi Xiong
چکیده

To identify electrical vehicle (EV) distribution paths with high robustness, insensitivity to uncertainty factors, and detailed road-by-road schemes, optimization of the distribution path problem of EV with multiple distribution centers and considering the charging facilities is necessary. With the minimum transport time as the goal, a robust optimization model of EV distribution path with adjustable robustness is established based on Bertsimas' theory of robust discrete optimization. An enhanced three-segment genetic algorithm is also developed to solve the model, such that the optimal distribution scheme initially contains all road-by-road path data using the three-segment mixed coding and decoding method. During genetic manipulation, different interlacing and mutation operations are carried out on different chromosomes, while, during population evolution, the infeasible solution is naturally avoided. A part of the road network of Xifeng District in Qingyang City is taken as an example to test the model and the algorithm in this study, and the concrete transportation paths are utilized in the final distribution scheme. Therefore, more robust EV distribution paths with multiple distribution centers can be obtained using the robust optimization model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resiliency improvement of distribution network considering the charge/discharge management of electric vehicles in parking lots through Bi-level optimization approach

Due to the growing use of Plug-in Electric vehicles in transportation networks, scheduling the charge/discharge of electric vehicles in parking lots can have great impacts on the distribution network's resiliency. This paper presents a Bi-level optimization model to improve the resiliency of the distribution network that takes into account the interaction between the distribution network island...

متن کامل

A robust optimization model for distribution and evacuation in the disaster response phase

Natural disasters, such as earthquakes, affect thousands of people and can cause enormous financial loss. Therefore, an efficient response immediately following a natural disaster is vital to minimize the aforementioned negative effects. This research paper presents a network design model for humanitarian logistics which will assist in location and allocation decisions for multiple disaster per...

متن کامل

A Robust Optimization Methodology for Multi-objective Location-transportation Problem in Disaster Response Phase under Uncertainty

This paper presents a multi-objective model for location-transportation problem under uncertainty that has been developed to respond to crisis. In the proposed model, humanitarian aid distribution centers (HADC), the number and location of them, the amount of relief goods stored in distribution centers, the amount of relief goods sent to the disaster zone, the number of injured people transferr...

متن کامل

A Non-dominated Sorting Ant Colony Optimization Algorithm Approach to the Bi-objective Multi-vehicle Allocation of Customers to Distribution Centers

Distribution centers (DCs) play important role in maintaining the uninterrupted flow of goods and materials between the manufacturers and their customers.This paper proposes a mathematical model as the bi-objective capacitated multi-vehicle allocation of customers to distribution centers. An evolutionary algorithm named non-dominated sorting ant colony optimization (NSACO) is used as the optimi...

متن کامل

Linear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization

In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018